Algebraic Topology (Fall 2018): Final Exam

1. Show that the degree of a map $f: T^{n} \rightarrow T^{n}$ of the n dimensional torus is the determinant of $f^{*}: H^{1}\left(T^{n} ; \mathbb{Z}\right) \rightarrow H^{1}\left(T^{n} ; \mathbb{Z}\right)$.
2. For a map $f: M \rightarrow N$ between connected closed orientable n-dimensional manifolds with fundamental classes $[M]$ and $[N]$, the degree of f, denoted by $d(f)$, is defined to be the integer d such that $f_{*}([M])=d[N]$. (See Exercise \#7 and \#8 in Section 3.3 (Page 259) of Hatcher's book.)

Using Poincaré duality and the naturality property of cap products, show that a map $f: M \rightarrow N$ of degree 1 between closed orientable n-dimensional manifolds induces split surjections $f_{*}: H_{i}(M ; R) \rightarrow H_{i}(N ; R)$ for all i.
3. For a map $f: M \rightarrow N$ between connected closed n-dimensional manifolds with $\mathbb{Z} / 2 \mathbb{Z}$ fundamental classes $[M]$ and $[N]$. The degree of f modulo 2 , denoted by $d_{2}(f)$, is defined to be integer $k \in \mathbb{Z} / 2 \mathbb{Z}$ such that $f_{*}[M]=k[N]$. Show that if this degree is non-zero, then f is surjective. Moreover, if the manifolds are oriented, then $d(f) \equiv d_{2}(f)(\bmod 2)$, where $d(f)$ is the usual degree of f.
4. Show that if M is a compact R-orientable n-manifold, then the boundary map

$$
H_{n}(M, \partial M ; R) \rightarrow H_{n-1}(\partial M ; R)
$$

sends a fundamental class for $(M, \partial M)$ to a fundamental class for ∂M.
5. If W is a compact manifold with boundary $\partial W=M$. Show that the Euler characteristic $\chi(M)$ of M is even. (Hint: apply Mayer-Vietoris sequence to the double of W. Here the double of W is the closed manifold obtained by gluing two copies of W along the common boundary $\partial W=M)$.
6. Let M be a closed connected oriented n-dimensional manifold with fundamental class $[M]$. Let $H^{*}(M ; \mathbb{R})$ be the cohomology groups of M with coefficients in the real numbers \mathbb{R}. In the question, we will work with coefficients \mathbb{R} exclusively, and will omit \mathbb{R} from our notation. We have seen that the cup product induces the following bilinear map

$$
\Phi: H^{i}(M) \times H^{n-i}(M) \rightarrow \mathbb{R}
$$

by setting $\Phi(\alpha, \beta)=(\alpha \cup \beta)[M]$.
(a) If $n=4 k$, then in the middle dimension we have

$$
\varphi: H^{2 k}(M) \times H^{2 k}(M) \rightarrow \mathbb{R}
$$

Show that φ is a symmetric bilinear map, that is $\varphi(\alpha, \beta)=\varphi(\beta, \alpha)$. Moreover, φ is nonsingular. Similarly, show that if $n=4 k+2$,

$$
\varphi: H^{2 k+1}(M) \times H^{2 k+1}(M) \rightarrow \mathbb{R}
$$

is a nonsingular skew-symmetric bilinear map.

A symmetric bilinear map $\varphi: V \times V \rightarrow \mathbb{R}$ on a real vector space V is just a symmetric matrix A, after fixing a basis of V. Recall that every symmetric matrix is congruent to a diagonal matrix with 1's, -1 's and 0 's along the diagonal. That is, there exists another basis of V such that A is diagonal with respect to that basis. Moreover, the number of 1 's, the number of -1 's, and the number of 0 's are independent of the choice of basis. This is usually referred to as Sylvester's law of inertia.
Denote the number of 1 's by r and the number of -1 's by s. Then the signature of φ is defined to be the integer $r-s$. Now if $\operatorname{dim} M=4 k$, we define the signature, denoted by $\tau(M)$, of M to be the signature of the symmetric bilinear map

$$
\varphi: H^{2 k}(M) \times H^{2 k}(M) \rightarrow \mathbb{R}
$$

If $\operatorname{dim} M$ is not a multiple of 4 , then we define its signature to be zero.
It is clear that the notion of signature also makes sense for closed oriented manifolds with finitely many connected components. Suppose M is closed oriented manifold with connected components M_{i}, for $1 \leq i \leq \ell$. Then we define

$$
\tau(M)=\sum_{i=1}^{\ell} \tau\left(M_{i}\right) .
$$

(b) Let M and N be closed connected oriented manifolds with fundamental class $[M]$ and $[N]$ respectively. Suppose $\operatorname{dim} M=m$ and $\operatorname{dim} N=n$. Equip $M \times N$ with the product orientation, that is, the fundamental class of $M \times N$ is $[M] \otimes[N] \in$ $H_{m+n}(M \times N) \cong H_{m}(M) \otimes H_{n}(N)$. Show that $\tau(M \times N)=\tau(M) \cdot \tau(N)$.
Hint: use Künneth formula for cohomology.
(c) Suppose W is compact connected oriented $(4 k+1)$-dimensional manifold with boundary $\partial W=M$. Show that $\tau(M)=0$ by the filling the details of the following steps.
(i) Let $\iota: M \rightarrow W$ be the inclusion. Suppose V is the image of the map

$$
\iota^{*}: H^{2 k}(W) \rightarrow H^{2 k}(M) .
$$

Show that the symmetric bilinear map $\varphi: H^{2 k}(M) \times H^{2 k}(M) \rightarrow \mathbb{R}$ is identically zero on V. (Hint: use the fact that the connecting map

$$
H_{4 k+1}(W, \partial W) \rightarrow H^{4 k}(M)
$$

maps the fundamental class $[W] \in H_{4 k+1}(W, \partial W)$ to the fundamental class $\left.[M] \in H_{4 k}(M)\right)$.
(ii) Use Poincaré duality to show that $\operatorname{dim} V$ is equal to the dimension of the kernel of the map

$$
\iota_{*}: H_{2 k}(M) \rightarrow H_{2 k}(W)
$$

(iii) Use universal coefficient theorem to show that $\operatorname{dim} V$ is equal to the dimension of the image of the map

$$
\iota_{*}: H_{2 k}(M) \rightarrow H_{2 k}(W) .
$$

(iv) Combining (ii) and (iii), show that

$$
\operatorname{dim} V=\frac{\operatorname{dim} H^{2 k}(M)}{2}
$$

Now recall the following fact. Suppose φ is a symmetric nonsingular bilinear form on a real vector space X of dimension $2 n$. If there exists a subspace $V \subset X$ of dimension n such that φ is identically zero on V, then the signature of φ is zero. You do not need to prove this fact. Use it to show that $\tau(M)=0$.

